Issue 5, 2016

Decorated reduced graphene oxide for photo-chemotherapy

Abstract

The biocompatibility and toxicity are still the key issues for graphene-based nanocarriers in the application of photothermal therapy. Herein, a novel surface modification strategy to prepare dextran decorated reduced graphene oxide (rGO) sheets has been presented. In this strategy, octadecanic acid is conjugated on dextran and used as a hydrophobic anchor to prepare dextran decorated rGO sheets. After being decorated by dextran, rGO sheets not only show excellent biocompatibility but also can load anticancer drugs for photo-chemotherapy. The data of Fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscopy (TEM) image and dynamic light scattering (DLS) measurements powerfully prove that the desired rGO compound with the ideal nano-size has been successfully prepared and is stable enough. To verify the photo-chemotherapy, an anticancer drug, doxorubicin (DOX), has been loaded into the decorated rGO sheets (rGO/DOX/C18D). Furthermore, to improve the intracellular uptake, folic acid (FA), as a common target molecule, has been introduced (rGO/DOX/C18DF). Compared with single chemotherapy, rGO/DOX/C18D and rGO/DOX/C18DF combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the decorated rGO nanoparticle with great potential for cancer treatments.

Graphical abstract: Decorated reduced graphene oxide for photo-chemotherapy

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2015
Accepted
02 Jan 2016
First published
04 Jan 2016

J. Mater. Chem. B, 2016,4, 929-937

Decorated reduced graphene oxide for photo-chemotherapy

Y. Hu, D. Sun, J. Ding, L. Chen and X. Chen, J. Mater. Chem. B, 2016, 4, 929 DOI: 10.1039/C5TB02359A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements