ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes†
Abstract
Stimuli-responsive nanocarriers for anticancer drug and gene co-delivery are a promising strategy in cancer therapy due to their combination of chemotherapy and gene therapy. In this work, we developed a facile and effective method to fabricate stimuli-responsive nanocarriers for anticancer drug and gene co-delivery based on complexes of polyethylenimine (PEI) with an adenosine triphosphate (ATP) responsive aptamer duplex (ARAD). No chemical reactions or complex modifications were used in the construction processes. In this system, Doxorubicin-loaded aptamer duplex and plasmid DNA (p53) can be bound by PEI by electronic interactions to form stable complexes which effectively protect the aptamer and p53 from DNase degradation. The intercalated Dox can be released on-demand by a structural change in the aptamer duplex in an ATP-rich environment. The morphology and average size of the nanocarriers were characterized by zeta potential and transmission electron microscopy (TEM). The nanocarriers exhibit lower cell toxicity in HeLa cell lines relative to PEI. RT-PCR and Western blot analysis confirmed that p53 could be effectively delivered and expressed in HeLa cells by PEI/ARAD/p53 complexes. Moreover, the apoptosis percentage of HeLa cells treated with PEI/ARAD/Dox/p53 complex increased to 40.8%, compared to 24.7% for PEI/ARAD/Dox complex and 11.5% for PEI/ARAD/p53, respectively. The result demonstrated that the combinatorial delivery of Dox and p53 by nanocarriers could induce synergistic actions and lead to effective cancer cell apoptosis.