Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation
Abstract
Electrodeposition is an attractive technique that provides a controllable and programmable means to trigger the assembly of stimuli-responsive biopolymers (e.g., chitosan) for a diverse range of applications. Here, we report a new electrodeposition method for chitosan based on the coordination of chitosan to the metal ions in situ-generated by simultaneous electrochemical oxidation. In particular, we typically construct a deposited hydrogel on the copper electrode through this coordinated electrodeposition method, and the obtained hydrogel is smooth, transparent and homogeneous, as well as it has stability under acidic conditions and enough strength to be readily peeled from the electrode. This coordinated electrodeposition can be conveniently employed to build coatings (on the electrodes) or hydrogel films (peeled from the electrodes) with various shapes, and it also enables nanoparticles (e.g., fluorescent carbon dots) to be codeposited with chitosan. Furthermore, by enlisting the special benefits of the coordinated electrodeposition, the diverse hydrogel patterns can be constructed on the electrodes. Interestingly, this coordinated electrodeposition can be employed to directly build the complex hydrogel on the electrode to perform electrochemical detection. Therefore, it can be expected that this coordinated electrodeposition of chitosan has promising applications in biomedical devices, surface coating, and metallic biomaterials.