Issue 17, 2016

Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery

Abstract

Exploring a plasmid DNA (pDNA)/small interfering RNA (siRNA) delivery vector with excellent biocompatibility and high gene transfection efficiency still remains a great challenge. In this research, generation 5 (G5) dendrimer-entrapped gold nanoparticles (Au DENPs) partially modified with polyethylene glycol monomethyl ether (mPEG) were designed as non-viral pDNA/siRNA delivery vectors. The pDNA that can encode luciferase (Luc) or enhanced green fluorescent protein (EGFP) and the Bcl-2 siRNA that can knockdown the expression of the Bcl-2 protein were successfully packaged by the partially PEGylated Au DENPs and effectively delivered into HeLa cells. The length of the surface conjugated mPEG chains and the composition of the entrapped Au NPs were systematically altered to explore their influences on the structure, cytotoxicity, and pDNA or siRNA delivery efficiency. We show that the modified mPEG and entrapped Au NPs can significantly improve the encoding of Luc and EGFP or silence the Bcl-2 protein expression, and the {(Au0)50-G5.NH2-mPEG2K} DENPs display the best DNA or siRNA delivery efficiency among all the designed partially PEGylated Au DENPs. The Luc transfection efficiency of the {(Au0)50-G5.NH2-mPEG2K} was about 292 times higher than that of the G5.NH2 dendrimers at an N/P ratio of 5 : 1, and the Bcl-2 protein was silenced to 15% using the {(Au0)50-G5.NH2-mPEG2K} as a vector relative to the expression level transfected using the G5.NH2 dendrimers (100%). With enhanced pDNA/siRNA transfection efficiency and less cytotoxicity, the PEGylated Au DENPs may hold great promise to be used in pDNA and siRNA delivery applications.

Graphical abstract: Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2016
Accepted
30 Mar 2016
First published
30 Mar 2016

J. Mater. Chem. B, 2016,4, 2933-2943

Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery

W. Hou, P. Wei, L. Kong, R. Guo, S. Wang and X. Shi, J. Mater. Chem. B, 2016, 4, 2933 DOI: 10.1039/C6TB00710D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements