Influence of strontium ions incorporated into nanosheet-pore topographical titanium substrates on osteogenic differentiation of mesenchymal stem cells in vitro and on osseointegration in vivo†
Abstract
Biophysical cues or biochemical cues were proved to efficiently regulate the fate of mesenchymal stem cells (MSCs), but their synergistic effects on the biological functions of MSCs remain to be further investigated. In this study, titanium (Ti) substrates were fabricated with distinct sub-micrometer nanosheet-pore topography via a vapor alkaline treatment method. Strontium (Sr) ions were then incorporated into the Ti substrates via ion exchange. Apart from the influence of biophysical cues from topography, MSCs were simultaneously affected by the biochemical cues from the continuously released Sr ions. The MSCs grown onto Ti substrates with Sr incorporated in them displayed higher (p < 0.05 or p < 0.01) cellular functions than those of pure Ti substrates, including proliferation, the genes and proteins expressions of osteogenic markers and mineralization potential when comparing them with the results of those MSCs grown onto pure Ti substrates. Furthermore, the in vivo investigations demonstrated that the Sr incorporated Ti implants promoted new bone formation. All the results indicated that the incorporated Sr ions and the nanosheet-pore topography of the Ti substrates synergistically enhanced the osteogenic differentiation of MSCs in vitro and osseointegration in vivo. This study advances the understanding of the synergistic influence of biophysical cues and biochemical cues on MSC osteogenic differentiation.