Issue 42, 2016

Characterization of mesoporous calcium phosphates from calcareous marine sediments containing Si, Sr and Zn for bone tissue engineering

Abstract

Calcium phosphates (CAPs) can be produced from either biologically sourced materials or mineral deposits. The raw materials impart unique properties to the CAPs due to innate trace amounts of elements that affect the crystal structure, morphology and stoichiometry. Using calcium carbonate (CaCO3) precursors derived from fossilized calcareous marine sediments (FCMSs), we have synthesized a novel class of CAP biomaterials, termed fm-CaPs, with defined Ca/P molar ratios of 1.4 and 1.7 using a wet synthesis method. Compared with commercially available CAP biomaterials, such as hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), fm-CaP1.7 had a biphasic composition consisting of an HA phase (in a hexagonal system) and a β-TCP phase (in a rhombohedral crystalline system), which is desirable for the current design of bone substitutes, whereas fm-CaP1.4 consisted of an HA phase and a beta-dicalcium pyrophosphate phase (in a tetragonal system). These bioceramics exhibited a fringe structure of regular crystallographic orientation with well-ordered mesoporous channels. The FCMS raw material imparted trace amounts of silicon (Si), strontium (Sr) and zinc (Zn) to fm-CaPs; these are elements that are important for bone formation. The cyto-compatibility of these biomaterials and their effects on cellular activity were evaluated using osteoblast cells. Cell proliferation assays revealed no signs of cytotoxicity, whereas cells growth was equal to or better than HA and β-TCP controls. The SEM analysis of the cell and material interactions showed good cell spreading on the fm-CaP materials that was comparable to β-TCP and in vitro assays suggested robust osteogenic differentiation, as seen by increased mineralization (alizarin red) and upregulation of osteogenic gene expression. Our results indicate that fm-CaP1.7, in particular, has chemical, physical and morphological properties that make this material suitable for applications that promote bone tissue regeneration.

Graphical abstract: Characterization of mesoporous calcium phosphates from calcareous marine sediments containing Si, Sr and Zn for bone tissue engineering

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2016
Accepted
26 Sep 2016
First published
26 Sep 2016

J. Mater. Chem. B, 2016,4, 6842-6855

Characterization of mesoporous calcium phosphates from calcareous marine sediments containing Si, Sr and Zn for bone tissue engineering

D. F. Silva, T. E. Friis, N. H. A. Camargo and Y. Xiao, J. Mater. Chem. B, 2016, 4, 6842 DOI: 10.1039/C6TB02255C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements