Novel high band gap pendant-borylated carbazole polymers with deep HOMO levels through direct +NB− interaction for organic photovoltaics†
Abstract
In this communication, we investigate the direct and still conjugated intramolecular +NB− interactions in novel high band gap borylated carbazole containing polymers, namely, poly(3,6-(N-di(2,4,6-trimethyl)phenylboryl-carbazole)-alt-4,8-di(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b′]dithiophene) (P(3,6-BCBDT)) and poly(3,6-(N-di(2,4,6-trimethyl)phenylboryl-carbazole)-alt-3,3′′′-didodecyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene) (P(3,6-BCQT)), which result in ambipolarity, high electron affinity, and deep HOMO levels. The quasi-donor–acceptor nature of the two polymers was confirmed by UV-Vis absorption, electro-chemical property studies, and computer modelling. Band gaps of 2.07 eV for P(3,6-BCBDT) and 2.23 eV for P(3,6-BCQT) were obtained. P(3,6-BCQT) afforded a power conversion efficiency of 1.44%, with a Jsc of 4.82 mA cm−2, a Voc of 0.79 V and a FF of 37%, and P(3,6-BCBDT) performed better with an efficiency of 3.82%, with a Jsc of 8.31 mA cm−2, a Voc of 1.0 V based on its low lying HOMO level, and a FF of 45%.