Issue 39, 2016

Nitrogen-doped multilayered nanographene derived from Ni3C with efficient electron field emission

Abstract

Stability and durability are crucial to graphene-based field emitting materials. Although well-aligned N-doped graphene has a large aspect ratio and good electrical conductivity, it suffers from weak adhesion to the substrate, electric field shielding, and Joule heating effect and possible damage and collapse may result in dissatisfied field emission properties. Herein, field emitters based on N-doped multilayered nanographene derived from Ni3C films are demonstrated to have strong adhesion to the substrate and a uniform large-aspect-ratio morphology. Field-emission (FE) measurements, from the channel edges of 250 microns in depth and 1 micron in width covered with N-doped multilayer nanographene, were performed on N-doped multilayered nanographene on Ni/Si-MCPs (N-doped MLG-MCPs), revealing a small turn-on field of 0.5 V μm−1, a low threshold field of 1.1 V μm−1, and a large enhancement factor β of 9012 at a distance of 100 μm. In addition, the current density is 2.85 mA cm−2 and 96.2% retention is observed after operation for 6 h. The performance and stability of N-doped MLG-MCPs are better than those reported previously from doped graphene nanostructures and comparable to those of carbon nanotubes and carbon-based nanocomposites. The materials with a well-aligned nanographene skeleton have great potential as next-generation FE electron sources.

Graphical abstract: Nitrogen-doped multilayered nanographene derived from Ni3C with efficient electron field emission

Article information

Article type
Paper
Submitted
31 Jul 2016
Accepted
07 Sep 2016
First published
07 Sep 2016

J. Mater. Chem. C, 2016,4, 9251-9260

Nitrogen-doped multilayered nanographene derived from Ni3C with efficient electron field emission

D. Wu, C. Zhang, S. Xu, Y. Zhu, D. Xiong, P. Guo, Y. Wu, R. Qi, R. Huang, L. Wang and P. K. Chu, J. Mater. Chem. C, 2016, 4, 9251 DOI: 10.1039/C6TC03264H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements