Issue 2, 2017

Rapid capillary mixing experiments for the analysis of hydrophobic membrane complexes directly from aqueous lipid bilayer solutions

Abstract

In this study the gas-phase conformer preferences of Gramicidin A (GA), a linear antimicrobial pentadecapeptide, were investigated directly from aqueous solutions of lipid vesicle bilayers using a mixing tee-electrospray ionization (MT-ESI) setup coupled with ion mobility mass spectrometry (IM-MS). The required time for GA sample preparation was decreased by approximately 50% using MT-ESI when compared to previously reported methods which required freeze-drying of samples. Using an MT-ESI approach to analyze samples of GA associated with POPC (16:0, 18:1 PC) and DEPC (22:1 PC) lipid bilayers yielded dimer conformer preferences comparable to results obtained using more lengthy protocols. GA analogues that contain leucine to lysine substitutions were analyzed; these analogues yielded more hydrophilic GA dimers owing to the hydrophilicity of lysine head groups. The conformer preferences of lipid bilayer associated hydrophilic GA analogues can be obtained owing to disassociation of lipids during the fast mixing time MT-ESI process. The data for both GA analogues associated with negatively charged POPC/POPG (16:0, 18:1 PC/PG) lipid bilayers reveal a preference for antiparallel double helix (ADH) formation. The adoption of nascent conformers for both GA analogues was observed using MT-ESI for samples associated with DMPC/DMPG (12:0 PC/PG) bilayers.

Graphical abstract: Rapid capillary mixing experiments for the analysis of hydrophobic membrane complexes directly from aqueous lipid bilayer solutions

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2016
Accepted
07 Dec 2016
First published
08 Dec 2016

Analyst, 2017,142, 310-315

Rapid capillary mixing experiments for the analysis of hydrophobic membrane complexes directly from aqueous lipid bilayer solutions

J. W. Patrick, B. Zerfas, J. Gao and D. H. Russell, Analyst, 2017, 142, 310 DOI: 10.1039/C6AN02290A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements