Issue 8, 2017

Viscoelastic hydrogels for 3D cell culture

Abstract

In tissues, many cells are surrounded by and interact with a three-dimensional soft extracellular matrix (ECM). Both the physical and biochemical properties of the ECM play a major role in regulating cell behaviours. To better understand the impact of ECM properties on cell behaviours, natural and synthetic hydrogels have been developed for use as synthetic ECMs for 3D cell culture. It has long been known that ECM and tissues are viscoelastic, or display a time-dependent response to deformation or mechanical loading, exhibiting stress relaxation and creep. However, only recently have there been efforts made to understand the role of the time-dependent aspects of the ECM mechanics on regulating cell behaviours using hydrogels for 3D culture. Here we review the characterization and molecular basis of hydrogel viscoelasticity and plasticity, and describe newly developed approaches to tuning viscoelasticity in hydrogels for 2D and 3D culture. Then we highlight several recent studies finding a potent impact of hydrogel stress relaxation or creep on cell behaviours such as cell spreading, proliferation, and differentiation of mesenchymal stem cells. The role of time-dependent mechanics on cell biology remains largely unclear, and ripe for further exploration. Further elucidation of this topic may substantially advance our understanding of cell–matrix interactions during development, homeostasis, wound healing, and disease, and guide the design of biomaterials for regenerative medicine.

Graphical abstract: Viscoelastic hydrogels for 3D cell culture

Article information

Article type
Minireview
Submitted
27 Mar 2017
Accepted
28 May 2017
First published
06 Jun 2017

Biomater. Sci., 2017,5, 1480-1490

Viscoelastic hydrogels for 3D cell culture

O. Chaudhuri, Biomater. Sci., 2017, 5, 1480 DOI: 10.1039/C7BM00261K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements