Functionalized lignin biomaterials for enhancing optical properties and cellular interactions of dyes†
Abstract
We report a library of functionalized lignins and demonstrate their utility as nanocontainers for organic dyes in biologically relevant applications. Kraft lignin was modified via SN2 reaction at the phenolic –OH group utilizing a mild base, potassium carbonate, and various alkyl halides, several bearing additional functionalities, with dimethylsulfoxide as solvent. The resulting phenoxy ethers were characterized by 1H-NMR and IR spectroscopy, as well as DLS and SEM to evaluate their morphology and supramolecular organization. Lignin modified with long-chain hydrocarbon tails was found to effectively encapsulate DiD, a cyanine dye, decrease aggregation, enhance optical transitions and exert a photoprotective effect. The dye–lignin assemblies were also examined as imaging agents, via confocal microscopy, and found to accumulate intracellularly with no leaching of the dye to hydrophobic subcellular components observed. Lignin functionalized with short chain carboxylic acids interacts with ligands directed at the norepinephrine transporter (NET), suggesting applications in sequestration of neuroactive compounds.