Kinetically controlled hierarchical self-assemblies of all-trans-retinoic acid on Au(111)†
Abstract
Kinetically controlled hierarchical self-assemblies of all-trans-retinoic acid on Au(111) were investigated via low-temperature scanning tunneling microscopy in ultra-high vacuum. The dominant molecular hierarchical superstructure could be selectively controlled to dimer, tetramer, or pentamer patterns, which were stabilized by hydrogen bonds and van der Waals interactions.