Issue 18, 2017

Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging

Abstract

In this work, phosphorus-doped graphene quantum dots (P-GQDs) with a high phosphorus doping content (>7 at%) are synthesized via an electrochemical approach. Sodium phytate (C6H6Na12O24P6), a green food antioxidant additive, is used as the electrolyte for providing both a phosphorus source and an electrolysis environment. The obtained P-GQDs exhibit excellent scavenging activity of free radicals, such as hydroxyl radicals (˙OH) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Combined with Raman, FT-IR, and XPS spectral analyses, the reason for high phosphorus content and the mechanism of free radical scavenging of P-GQDs are investigated in our work.

Graphical abstract: Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2016
Accepted
07 Apr 2017
First published
07 Apr 2017

Phys. Chem. Chem. Phys., 2017,19, 11631-11638

Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging

Y. Li, S. Li, Y. Wang, J. Wang, H. Liu, X. Liu, L. Wang, X. Liu, W. Xue and N. Ma, Phys. Chem. Chem. Phys., 2017, 19, 11631 DOI: 10.1039/C6CP06377B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements