The role of charge transfer in the stability and reactivity of chemical systems from experimental findings
Abstract
A variety of phenomena, of apparently different natures, are described within a unifying picture, by properly isolating the role of charge/electron transfer as an interaction component triggering chemical reactivity. This basic quantity is isolated by analyzing, with advanced theoretical methods developed by our group, experimental findings characterized with different techniques, such as double photo-ionization spectra, scattering cross sections and auto-ionization reaction probabilities. Suitable rationalization of such phenomena appears to be crucial for modeling the selectivity of basic elementary processes occurring in systems at increasing complexity of fundamental/applied interest, such as plasmas, flames, interstellar media, planetary atmospheres and biological environments.
- This article is part of the themed collection: PCCP Perspectives