Issue 30, 2017

Dissociation of cyclopropane in double ionization continuum

Abstract

Dissociative double photoionization of cyclopropane is studied in the inner-valence region using tunable synchrotron radiation. With the aid of ab initio quantum chemical calculations the energies of dication states and their favoured fragmentation pathways are determined. These are compared to the experimental appearance energies of two-body fragmentation processes and to the kinetic energy released upon dissociation. Photon energy dependent state-selective dissociation in the 25–35 eV range is found. Calculations of dissociation pathways suggest that cyclopropane ring-deformation is selectively triggered at certain photon energies. The calculations suggest that initial ring deformation essentially determines the population of different dication states that function as gateways for particular dissociation channels. The measurements show that stepwise ionization processes populate dissociative 3e′−2 states via ring-opening and Jahn–Teller active states at photon energies below the double-ionization threshold. For energies above the double-ionization threshold the kinematics indicate that double ionization takes place predominantly within the Franck–Condon region populating 3e′−1 1e′′−1 states.

Graphical abstract: Dissociation of cyclopropane in double ionization continuum

Article information

Article type
Paper
Submitted
15 Mar 2017
Accepted
10 Apr 2017
First published
13 Apr 2017

Phys. Chem. Chem. Phys., 2017,19, 19631-19639

Dissociation of cyclopropane in double ionization continuum

S. Oghbaie, M. Gisselbrecht, E. P. Månsson, J. Laksman, C. Stråhlman, A. Sankari and S. L. Sorensen, Phys. Chem. Chem. Phys., 2017, 19, 19631 DOI: 10.1039/C7CP01667K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements