Issue 30, 2017

Trapping-desorption and direct-scattering of formaldehyde at Au(111)

Abstract

Nonreactive surface scattering of atoms, molecules and clusters can be almost universally described by two mechanisms: trapping-desorption and direct-scattering. A hard cube model with an attractive square well provides a zeroth order description of the branching ratio between these two mechanisms as a function of the incidence energy. However, the trapping process is likely to be enhanced by excitation of internal degrees of freedom during the collision. In this molecular beam surface scattering study, we characterize formaldehyde/Au(111) scattering using angle resolved time-of-flight techniques. The two mechanisms are found to compete in the range of the investigated normal incidence energies between 0.1 and 1.3 eV. Whereas at low incidence energies trapping-desorption dominates, direct-scattering becomes more likely at incidence energies above 0.37 eV. This incidence energy is slightly higher than the desorption energy which is found to be 0.32 ± 0.03 eV by temperature programmed desorption techniques. A simple hard cube model underestimates the observed trapping probabilities indicating the importance of trapping induced by excitation of internal molecular degrees of freedom.

Graphical abstract: Trapping-desorption and direct-scattering of formaldehyde at Au(111)

Article information

Article type
Paper
Submitted
12 Jun 2017
Accepted
09 Jul 2017
First published
10 Jul 2017

Phys. Chem. Chem. Phys., 2017,19, 19896-19903

Trapping-desorption and direct-scattering of formaldehyde at Au(111)

B. C. Krüger, G. B. Park, S. Meyer, R. J. V. Wagner, A. M. Wodtke and T. Schäfer, Phys. Chem. Chem. Phys., 2017, 19, 19896 DOI: 10.1039/C7CP03907G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements