Issue 48, 2017

A new scaling for the rotational diffusion of molecular probes in polymer solutions

Abstract

In the present work, we propose a new scaling form for the rotational diffusion coefficient of molecular probes in semi-dilute polymer solutions, based on a theoretical study. The mean-field theory for depletion effect and semi-empirical scaling equation for the macroscopic viscosity of polymer solutions are properly incorporated to specify the space-dependent concentration and viscosity profiles in the vicinity of the probe surface. Following the scheme of classical fluid mechanics, we numerically evaluate the shear torque exerted on the probes, which then allows us to further calculate the rotational diffusion coefficient Dr. Particular attention is given to the scaling behavior of the retardation factor RrotDr0/Dr with Dr0 being the diffusion coefficient in pure solvent. We find that Rrot has little relevance to the macroscopic viscosity of the polymer solution, while it can be well featured by the characteristic length scale rh/δ, i.e. the ratio between the hydrodynamic radius of the probe rh and the depletion thickness δ. Correspondingly, we obtain a novel scaling form for the rotational retardation factor, following Rrot = exp[a(rh/δ)b] with rather robust parameters of a ≃ 0.51 and b ≃ 0.56. We apply the theory to an extensive calculation for various probes in specific polymer solutions of poly(ethylene glycol) (PEG) and dextran. Our theoretical results show good agreements with the experimental data, and clearly demonstrate the validity of the new scaling form. In addition, the difference of the scaling behavior between translational and rotational diffusions is clarified, from which we conclude that the depletion effect plays a more significant role on the local rotational diffusion rather than the long-range translation diffusion.

Graphical abstract: A new scaling for the rotational diffusion of molecular probes in polymer solutions

Article information

Article type
Paper
Submitted
16 Oct 2017
Accepted
07 Nov 2017
First published
07 Nov 2017

Phys. Chem. Chem. Phys., 2017,19, 32687-32697

A new scaling for the rotational diffusion of molecular probes in polymer solutions

J. Qing, A. Chen and N. Zhao, Phys. Chem. Chem. Phys., 2017, 19, 32687 DOI: 10.1039/C7CP07047K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements