Controllable design of tunable nanostructures inside metal–organic frameworks
Abstract
The controllable encapsulation of nanoentities (such as metal nanoparticles, quantum dots, polyoxometalates, organic and metallorganic molecules, biomacromolecules, and metal–organic polyhedra) into metal–organic frameworks (MOFs) to form composite materials has attracted significant research interest in a variety of fields. These composite materials not only exhibit the properties of both the nanoentities and the MOFs but also display unique and synergistic functionalities. Tuning the sizes, compositions, and shapes of nanoentities encapsulated in MOFs enables the final composites to exhibit superior performance to those of the separate constituents for various applications. In this tutorial review article, we summarized the state-of-the-art development of MOFs containing encapsulated tunable nanoentities, with special emphasis on the preparation and synergistic properties of these composites.