Micro/nanomotors towards in vivo application: cell, tissue and biofluid
Abstract
Inspired by highly efficient natural motors, synthetic micro/nanomotors are self-propelled machines capable of converting the supplied fuel into mechanical motion. A significant advance has been made in the construction of diverse motors over the last decade. These synthetic motor systems, with rapid transporting and efficient cargo towing abilities, are expected to open up new horizons for various applications. Utilizing emergent motor platforms for in vivo applications is one important aspect receiving growing interest as conventional therapeutic methodology still remains limited for cancer, heart, or vasculature diseases. In this review we will highlight the recent efforts towards realistic in vivo application of various motor systems. With ever booming research enthusiasm in this field and increasing multidisciplinary cooperation, micro/nanomotors with integrated multifunctionality and selectivity are on their way to revolutionize clinical practice.