Recovery of uranium(vi) from aqueous solutions using a modified honeycomb-like porous carbon material†
Abstract
Researchers have focused their attention on environment-friendly adsorption materials to solve the energy shortage problem and guarantee the sustainable development of human society. For that matter, pomelo peel, which is a low-cost and universal biomass waste, can be used as an effective carbon source with a large specific surface area. In this paper, a novel composite adsorbent, consisting of a three-dimensional honeycomb-like porous carbon material and MnO2 nanowires (HLPC/MnO2), has been successfully synthesized using alkaline activation followed by a carbonization procedure at high temperatures and in situ growth of MnO2 nanowires. The as-prepared composite was characterized using XRD, FT-IR, XPS, SEM, TEM and BET. The surface area of the HLPC reached 1147.41 m2 g−1. The results of the adsorption experiments show that the highest adsorption value of the HLPC/MnO2 composite was 238.09 mg-U per g-adsorbent at pH 5. The thermodynamic and kinetic parameters demonstrate that the removal process correlates well with a Langmuir adsorption isotherm model and pseudo-second-order kinetic model. Thus, the HLPC/MnO2 composite is an excellent adsorbent for removing uranium(VI) ions from aqueous solutions.