Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties†
Abstract
Gold nanoparticles (AuNPs) and polycationic macromolecules are used as gene carriers. Their behaviour is dependent on several factors, such as the size and type of the framework, charge, etc. We have combined both types of systems and prepared AuNPs covered with cationic carbosilane dendrons with the aim to evaluate their biocompatibility. Water soluble dendronized cationic AuNPs were prepared following a straightforward procedure from dendrons, a gold precursor and a reducing agent in water and were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), and zeta potential (ZP). The biological properties of dendrons and AuNPs were determined by hemolysis, platelet aggregation and lymphocyte proliferation. These assays reflect modification of dendron properties when covering nanoparticles. For dendrons, hemolysis and platelet aggregation are generation dependent whilst, for AuNPs these properties are related to the bigger size of NPs. On the other hand, none of the systems induced lymphocyte proliferation. Selected cationic dendrons and AuNPs were chosen for gene delivery experiments employing a small interference RNA (siRNA Nef) against human immunodeficiency virus (HIV).
- This article is part of the themed collection: Silicon Chemistry: Discoveries and Advances