Issue 3, 2017

Replacement of quinolines with isoquinolines affords target metal ion switching from Zn2+ to Cd2+ in the fluorescent sensor TQLN (N,N,N′,N′-tetrakis(2-quinolylmethyl)-2,6-bis(aminomethyl)pyridine)

Abstract

A quinoline-based heptadentate ligand, N,N,N′,N′-tetrakis(2-quinolylmethyl)-2,6-bis(aminomethyl)pyridine (TQLN), exhibits a Zn2+-specific fluorescence increase at 428 nm, which is assigned to excimer emission (IZn/I0 = 38, ICd/IZn = 24%, ϕZn = 0.069). In contrast, the isoquinoline counterpart 1-isoTQLN exhibits a Cd2+-specific fluorescence increase at 365 nm attributable to monomer emission (ICd/I0 = 83, IZn/ICd = 19%, ϕCd = 0.015).

Graphical abstract: Replacement of quinolines with isoquinolines affords target metal ion switching from Zn2+ to Cd2+ in the fluorescent sensor TQLN (N,N,N′,N′-tetrakis(2-quinolylmethyl)-2,6-bis(aminomethyl)pyridine)

Supplementary files

Article information

Article type
Communication
Submitted
13 Oct 2016
Accepted
08 Dec 2016
First published
08 Dec 2016

Dalton Trans., 2017,46, 632-637

Replacement of quinolines with isoquinolines affords target metal ion switching from Zn2+ to Cd2+ in the fluorescent sensor TQLN (N,N,N′,N′-tetrakis(2-quinolylmethyl)-2,6-bis(aminomethyl)pyridine)

Y. Mikata, A. Takekoshi, M. Kaneda, H. Konno, K. Yasuda, M. Aoyama and S. Tamotsu, Dalton Trans., 2017, 46, 632 DOI: 10.1039/C6DT03948K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements