Issue 12, 2017

Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics

Abstract

AgBiSe2 has recently been shown to exhibit promising thermoelectric properties due to the low intrinsic thermal conductivity, stemming from a large degree of lattice anharmonicity. While samples synthesized via solid-state routes usually exhibit n-type behavior, p-type transport is seen in samples based on solution synthetic routes possibly due to Ag vacancies. Using a combined approach of synchrotron diffraction, thermoelectric transport measurements and thermal transport modeling, we show the influence of synthetically induced Ag vacancies on the structure of AgBiSe2 and the thermoelectric transport. We identify the degree of anti-site disorder of Ag and Bi due to the occurring phase transformation and the influence of the vacancy content on metal ordering. Additionally, we show that anti-site disorder and vacancies act as scattering centers for phonons, leading to enhanced point defect scattering in this interesting thermoelectric material.

Graphical abstract: Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2017
Accepted
22 Feb 2017
First published
22 Feb 2017

Dalton Trans., 2017,46, 3906-3914

Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics

F. Böcher, S. P. Culver, J. Peilstöcker, K. S. Weldert and W. G. Zeier, Dalton Trans., 2017, 46, 3906 DOI: 10.1039/C7DT00381A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements