Electrocatalytic oxygen evolution with a cobalt complex†
Abstract
The development of an earth-abundant, first-row water oxidation catalyst that operates at a high TOF and a low overpotential remains a fundamental chemical challenge. Cobalt complexes are important members of water oxidation catalysts. Herein, we report a cobalt-based robust homogeneous water oxidation catalyst, which can electrocatalyze water oxidation at a high pH and a low overpotential (η = 520 mV) in phosphate buffer. This homogeneous system exhibits a high turnover frequency (about 5 s−1) of catalyzing water oxidation to produce oxygen at η = 720 mV. We speculate the mechanism of the reaction that O–O bond formation prefers a HO–OH coupling in catalytic water oxidation.