Issue 1, 2017

Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase

Abstract

High specific surface area carbon (HSSAC) is a class of promising high-capacity anode materials for sodium-ion batteries (SIBs). A critical bottleneck of the HSSAC anode, however, is the ultra-low initial coulombic efficiency (ICE) in commonly used ester-based electrolytes. This phenomenon further prohibits improving the specific capacity, long-term stability and rate capability of HSSAC anodes. This work reports the largely enhanced anode performance of several different HSSAC anodes in ether-based electrolytes. Very importantly, with the reduced graphene oxide (rGO) anode as one example, the ICE can be as high as 74.6% accompanied by a large reversible specific capacity of 509 mA h g−1 after 100 cycles at a current density of 0.1 A g−1. 75.2% of the capacity was retained after 1000 cycles at 1 A g−1. Even at a high current density of 5 A g−1, the specific capacity of the rGO anode can be obtained at 196 mA h g−1. This extraordinary performance is ascribed to the stable, thin, compact, uniform and ion conducting solid electrolyte interphase (SEI) formed in an ether-based electrolyte. Fortunately, this SEI-modifying strategy is generic and is independent of the specific microstructures of HSSAC anodes, indicating a promising avenue for manipulating the SEI on HSSAC anodes through utilizing ether solvents to enable achievement of high ICE for large-capacity HSSAC anodes for practical applications.

Graphical abstract: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2016
Accepted
14 Dec 2016
First published
14 Dec 2016

Energy Environ. Sci., 2017,10, 370-376

Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase

J. Zhang, D. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang and Q. Yang, Energy Environ. Sci., 2017, 10, 370 DOI: 10.1039/C6EE03367A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements