Issue 5, 2017

Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells

Abstract

With close to 100% internal quantum efficiency over the absorption spectrum, photocurrents in perovskite solar cells (PSCs) are at their practical limits. It is therefore imperative to improve open-circuit voltages (VOC) in order to go beyond the current 100 mV loss-in-potential. Identifying and suppressing recombination bottlenecks in the device stack will ultimately drive the voltages up. In this work, we investigate in depth the recombination at the different interfaces in a PSC, including the charge selective contacts and the effect of grain boundaries. We find that the density of grain boundaries and the use of tunneling layers in a highly efficient PSC do not modify the recombination dynamics at 1 sun illumination. Instead, the recombination is strongly dominated by the dopants in the hole transporting material (HTM), spiro-OMeTAD and PTAA. The reduction of doping concentrations for spiro-OMeTAD yielded VOC's as high as 1.23 V in contrast to PTAA, which systematically showed slightly lower voltages. This work shows that a further suppression of non-radiative recombination is possible for an all-low-temperature PSC, to yield a very low loss-in-potential similar to GaAs, and thus paving the way towards higher than 22% efficiencies.

Graphical abstract: Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2017
Accepted
24 Mar 2017
First published
06 Apr 2017

Energy Environ. Sci., 2017,10, 1207-1212

Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells

J. Correa-Baena, W. Tress, K. Domanski, E. H. Anaraki, S. Turren-Cruz, B. Roose, P. P. Boix, M. Grätzel, M. Saliba, A. Abate and A. Hagfeldt, Energy Environ. Sci., 2017, 10, 1207 DOI: 10.1039/C7EE00421D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements