Issue 7, 2017

Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries

Abstract

The practical use of lithium–sulfur (Li–S) batteries is largely hindered by their poor cycling stability because of the shuttling of soluble lithium polysulfides (LiPSs) in a slow redox reaction. Physical and chemical confinement by carbon or noncarbon hosts has been used to block LiPS shuttling, but this may only be a complete solution to the problem if it combines with LiPS fast conversion into an insoluble sulfide. Here we report a twinborn TiO2–TiN heterostructure that combines the merits of highly adsorptive TiO2 with conducting TiN and achieves smooth trapping–diffusion–conversion of LiPSs across the interface. TiO2 has high adsorption for LiPSs while TiN promotes their conversion into insoluble Li2S. The fast diffusion of LiPSs from TiO2 to TiN helps achieve both high trapping efficiency and fast conversion. By loading such a heterostructure onto graphene, which acts as a physical barrier, a compact and thin coating is fabricated on the separator, and LiPS shuttling is greatly restrained even with a high sulfur loading. A capacity of 927 mA h g−1 after 300 cycles is obtained under a low current density of 0.3C. Over 2000 cycles, capacity retentions of 73% and 67% at 1C are achieved for sulfur loadings of 3.1 and 4.3 mg cm−2. Such an interlayer is expected to promote the practical use of Li–S batteries because of the simple processing and the resulting outstanding capacity and cyclic performance. Such a heterostructure suggests a new way to produce multifunctional interlayers that improve the performance of energy storage devices.

Graphical abstract: Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2017
Accepted
26 Jun 2017
First published
26 Jun 2017

Energy Environ. Sci., 2017,10, 1694-1703

Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries

T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang and Q. Yang, Energy Environ. Sci., 2017, 10, 1694 DOI: 10.1039/C7EE01430A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements