Issue 3, 2017

Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon

Abstract

Accurate prediction of the sorption coefficients of volatile organic compounds (VOCs) on carbon nanotubes (CNTs) is of major importance for developing an effective VOC removal process and risk assessment of released nanomaterial-carrying contaminants. The linear free energy relationship (LFER) approach was applied to investigate the adsorption mechanisms of VOCs on multiwalled CNTs (MWCNTs). The gas–solid partition coefficients (log Kd) of 17 VOCs were determined at 0%, 55%, and 90% relative humidity (RH). The cavity/dispersion interaction is generally the most influential adsorption mechanism for all RH cases. The hydrogen-accepting interactions declined but with constant hydrogen-donating interactions during the increase of RH, suggesting that the acidity of VOC was important in forming sorptive interaction with the MWCNT surface. Moreover, the comparison of log Kd of VOCs on MWCNTs and other sorbents revealed that the sorption performance of MWCNTs is much more stable over a wider range of RHs due to better site availability and site quality. Furthermore, for all 6 adsorbents in all RHs, the positive contribution of hydrogen bonding ability was found as compared to the negative one found for sorbents completely in water, indicating that the hydrogen-bond donor and acceptor on the sorbent surface contribute to the sorption in the gas phase. In conclusion, the LFER-derived coefficients can be useful in predicting the performance of VOC adsorption on adsorbents and in facilitating the design of efficient VOC removal systems.

Graphical abstract: Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2016
Accepted
18 Jan 2017
First published
19 Jan 2017

Environ. Sci.: Processes Impacts, 2017,19, 276-287

Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon

M. Li, R. Wang, D. T. Fu Kuo and Y. Shih, Environ. Sci.: Processes Impacts, 2017, 19, 276 DOI: 10.1039/C6EM00567E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements