Issue 1, 2017

Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution

Abstract

Particle size affects the toxicity and environmental fate of engineered nanoparticles (NPs). Although size effects have been widely studied in the experimental NP fate and toxicity literature, no numerical models published to date have attempted to identify and compare state-of-the-art particle modeling methods commonly applied in closely related fields. We compare four numerical frameworks for modeling changes in the size distribution of a NP suspension undergoing dissolution and aggregation: the Sectional Method (SM), Direct Simulation Monte Carlo (DSMC), the Direct Quadrature Method of Moments (DQMOM), and the Extended Quadrature Method of Moments (EQMOM). The SM and the DQMOM were faster or more accurate than the EQMOM and DSMC in nearly every trial. For cases simulating aggregation, the DQMOM took seconds to achieve solutions with ≤2% error, while the SM (a rigorous implementation of the most popular population balance method to date for NPs) took up to 1.5 hours. The SM was far more accurate than the DQMOM for dissolution test cases; however, up to 50 size bins were required to achieve ≤10% error. This raises questions about the validity of the current practice of using five or fewer bins in models of NP fate in rivers. Because runtimes become prohibitive as environmental complexity and particle properties are added, the DQMOM is promising for field-scale models and models that describe NPs with complex morphologies or compositions, such as non-spherical NPs, coated NPs, and nanohybrids. MATLAB code for all models is provided in the ESI.

Graphical abstract: Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2016
Accepted
16 Oct 2016
First published
18 Oct 2016

Environ. Sci.: Nano, 2017,4, 89-104

Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution

A. L. Dale, G. V. Lowry and E. A. Casman, Environ. Sci.: Nano, 2017, 4, 89 DOI: 10.1039/C6EN00330C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements