Issue 11, 2017

Consumption of a single serving of red raspberries per day reduces metabolic syndrome parameters in high-fat fed mice

Abstract

Using an animal model for diet-induced metabolic disease, we have shown previously that the addition of raspberry juice concentrate (RJC) and raspberry puree concentrate (RPC) at a level of 10% of kcal, equivalent to four servings per day, to an obesogenic high-fat, western-style diet (HF) significantly reduced body weight gain, serum resistin levels, and altered the expression of hepatic genes related to lipid metabolism and oxidative stress. This study was designed to examine the effect of a lower level of RJC or RPC consumption, at a level representing a single serving of food per day (2.5% of kcal). For ten weeks, four groups of C57BL/6J mice (n = 8 ea.) were fed: low fat (LF), HF, HF + RJC, or HF + RPC diets. Intake of RJC and RPC decreased final body weight. Hepatic lipid accumulation was significantly decreased in HF + RPC- and HF + RJC-fed mice, compared to HF-fed mice. Further, the relative expression of hepatic genes including Heme oxygenase 1 (Hmox1) and Hormone sensitive lipase (Lipe), were altered by RPC or RJC consumption. In this mouse model of diet-induced metabolic disease, consumption of the equivalent of a single daily serving of either RPC or RJC improved metabolism in mice fed HF diet. We hypothesize that the phytochemicals contained in raspberries, and/or their subsequent metabolites, may be acting to influence gene expression and other regulatory pathways, to produce the metabolic improvements observed in this study.

Graphical abstract: Consumption of a single serving of red raspberries per day reduces metabolic syndrome parameters in high-fat fed mice

Article information

Article type
Paper
Submitted
12 May 2017
Accepted
25 Sep 2017
First published
28 Sep 2017

Food Funct., 2017,8, 4081-4088

Consumption of a single serving of red raspberries per day reduces metabolic syndrome parameters in high-fat fed mice

T. Luo, O. Miranda-Garcia, G. Sasaki and N. F. Shay, Food Funct., 2017, 8, 4081 DOI: 10.1039/C7FO00702G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements