Issue 8, 2017

Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/polycondensation

Abstract

The general and efficient copolymerization of lactones with hydroxy-acid bioaromatics was accomplished via a concurrent ring-opening polymerization (ROP) and polycondensation methodology. Suitable lactones were L-lactide or ε-caprolactone and four hydroxy-acid comonomers were prepared as hydroxyethyl variants of the bioaromatics syringic acid, vanillic acid, ferulic acid, and p-coumaric acid. Copolymerization conditions were optimized on a paradigm system with a 20 : 80 feed ratio of caprolactone : hydroxyethylsyringic acid. Among six investigated catalysts, polymer yield was optimized with 1 mol% of Sb2O3, affording eight copolymer series in good yields (32–95% for lactide; 80–95% for caprolactone). Half of the polymers were soluble in the GPC solvent hexafluoroisopropanol and analyzed to high molecular weight, with Mn = 10 500–60 700 Da. Mass spectrometry and 1H NMR analysis revealed an initial ring-opening formation of oligolactones, followed by polycondensation of these with the hydroxy-acid bioaromatic, followed by transesterification, yielding a random copolymer. By copolymerizing bioaromatics with L-lactide, the glass transition temperature (Tg) of polylactic acid (PLA, 50 °C) could be improved and tuned in the range of 62–107 °C; the thermal stability (T95%) of PLA (207 °C) could be substantially increased up to 323 °C. Similarly, bioaromatic incorporation into polycaprolactone (PCL, Tg = −60 °C) accessed an improved Tg range from −48 to 105 °C, while exchanging petroleum-based content with biobased content. Thus, this ROP/polycondensation methodology yields substantially or fully biobased polymers with thermal properties competitive with incumbent packaging thermoplastics such as polyethylene terephthalate (Tg = 67 °C) or polystyrene (Tg = 95 °C).

Graphical abstract: Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/polycondensation

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2016
Accepted
05 Jan 2017
First published
16 Jan 2017

Green Chem., 2017,19, 1877-1888

Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/polycondensation

H. T. H. Nguyen, G. N. Short, P. Qi and S. A. Miller, Green Chem., 2017, 19, 1877 DOI: 10.1039/C6GC03238A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements