Issue 13, 2017

Solar-driven alumina calcination for CO2 mitigation and improved product quality

Abstract

We report on the first-of-a-kind experimental demonstration of the calcination of alumina with concentrated solar thermal (CST) radiation at radiative fluxes up to 2190 suns using a 5 kW novel solar transport reactor. Aluminium hydroxide was calcined at nominal reactor temperatures over the range 1160–1550 K to yield chemical conversions of up to 95.8% for nominal residence times of approximately 3 s. Solar energy conversion efficiencies of up to 20.4% were achieved. The mean pore diameter and specific surface area of the solar-generated alumina with the greatest chemical conversion were 5.8 nm and 132.7 m2 g−1, respectively, which are higher values than are typical for industrial alumina production. In addition, the product is dominated by the γ-phase, which is desirable for the downstream processing to aluminium. This suggests that CST can improve the quality of alumina over existing fossil fuel based processes though a combination of a high heating rate and avoided contamination by combustion products. Furthermore, the solar-driven process has the potential to avoid the discharge of combustion-derived CO2 emissions for the calcination stage of the conventional Bayer process, which is typically 165 kg-CO2 per tonne-alumina.

Graphical abstract: Solar-driven alumina calcination for CO2 mitigation and improved product quality

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2017
Accepted
10 May 2017
First published
10 May 2017
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2017,19, 2992-3005

Solar-driven alumina calcination for CO2 mitigation and improved product quality

D. Davis, F. Müller, W. L. Saw, A. Steinfeld and G. J. Nathan, Green Chem., 2017, 19, 2992 DOI: 10.1039/C7GC00585G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements