Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins†
Abstract
The selective reductive catalytic depolymerisation of softwood lignin (e.g. pine, spruce) yields predominantly 4-n-propylguaiacol (4PG; 15–20 wt% on lignin basis), an interesting platform chemical for bio-based chemistry. This contribution specifically shows promising technical, sustainable and environmental advantages of such a bio-phenol for various polymer applications. The bisphenolic polymer precursor, 5,5′-methylenebis(4-n-propylguaiacol) (m,m′-BGF-4P), was therefore first synthesized by acid-catalysed condensation, and its synthesis and isolation are compared with shorter chain analogs, viz. 4-methyl- and 4-ethylguaiacol. A thorough GC-GPC/SEC analysis of the crude condensation mixture was developed to assess the purity of the isolated dimers. Isolation is done by a single-step crystallization, yielding 57 wt% of m,m′-BGF-4P in >99% purity. This pure m,m′-BGF-4P bisphenol displays a notably reduced potency to activate human estrogen receptor alpha (hERα; EC50 at 10−5 M) in comparison with commercial bisphenols, and is therefore useful for future polymer applications. As a proof of concept, polycarbonates and cyanate ester resins were prepared from m,m′-BGF-4P and compared to other bisphenols. The polycarbonate had Mn = 5182 g mol−1, Tg = 99 °C, Tm = 213 °C, Td,5% = 360 °C, and displayed improved processability in common solvents, as opposed to the methylated and ethylated bisguaiacols. A fully cured resin disk exhibited a Tg = 193 °C, Td,5% = 389 °C and a water uptake of only 1.18% after being immersed in 85 °C water for four days. These results underscore the potential of the intrinsic functionality of lignin-derived building blocks to transcend the scope of renewability.