Issue 6, 2017

Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy

Abstract

Magnetic liposome-mediated combined chemotherapy and hyperthermia is gaining importance as an effective therapeutic modality for cancer. However, control and maintenance of optimum hyperthermia are major challenges in clinical settings due to the overheating of tissues. To overcome this problem, we developed a novel magnetic liposomes formulation co-entrapping a dextran coated biphasic suspension of La0.75Sr0.25MnO3 (LSMO) and iron oxide (Fe3O4) nanoparticles for self-controlled hyperthermia and chemotherapy. However, the general apprehension about biocompatibility and safety of the newly developed formulation needs to be addressed. In this work, in vitro and in vivo biocompatibility and therapeutic evaluation studies of the novel magnetic liposomes are reported. Biocompatibility study of the magnetic liposomes formulation was carried out to evaluate the signs of preliminary systemic toxicity, if any, following intravenous administration of the magnetic liposomes in Swiss mice. Therapeutic efficacy of the magnetic liposomes formulation was evaluated in the fibrosarcoma tumour bearing mouse model. Fibrosarcoma tumour-bearing mice were subjected to hyperthermia following intratumoral injection of single or double doses of the magnetic liposomes with or without chemotherapeutic drug paclitaxel. Hyperthermia (three spurts, each at 3 days interval) with drug loaded magnetic liposomes following single dose administration reduced the growth of tumours by 2.5 fold (mean tumour volume 2356 ± 550 mm3) whereas the double dose treatment reduced the tumour growth by 3.6 fold (mean tumour volume 1045 ± 440 mm3) compared to their corresponding control (mean tumour volume 3782 ± 515 mm3). At the end of the tumour efficacy studies, the presence of MNPs was studied in the remnant tumour tissues and vital organs of the mice. No significant leaching or drainage of the magnetic liposomes during the study was observed from the tumour site to the other vital organs of the body, suggesting again the potential of the novel magnetic liposomes formulation for possibility of developing as an effective modality for treatment of drug resistant or physiologically vulnerable cancer.

Graphical abstract: Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2016
Accepted
11 Apr 2017
First published
25 Apr 2017

Integr. Biol., 2017,9, 555-565

Spotlight

Advertisements