Tamoxifen-like metallocifens target the thioredoxin system determining mitochondrial impairment leading to apoptosis in Jurkat cells†
Abstract
Tamoxifen-like metallocifens (TLMs) of the group-8 metals (Fe, Ru, and Os) show strong anti-proliferative activity on cancer cell lines resistant to apoptosis, owing to their unique redox properties. In contrast, the thioredoxin system, which is involved in cellular redox balance, is often overexpressed in cancer cells, especially in tumour types resistant to standard chemotherapies. Therefore, we investigated the effect of these three TLMs on the thioredoxin system and evaluated the input of the metallocene unit in comparison with structurally related organic tamoxifens. In vitro, all three TLMs became strong inhibitors of the cytosolic (TrxR1) and mitochondrial (TrxR2) isoforms of thioredoxin reductase after enzymatic oxidation with HRP/H2O2 while none of the organic analogues was effective. In Jurkat cells, TLMs inhibited mainly TrxR2, resulting in the accumulation of oxidized thioredoxin 2 and cell redox imbalance. Overproduction of ROS resulted in a strong decrease in the mitochondrial membrane potential, translocation of cytochrome c to the cytosol and activation of caspase 3, thus leading to apoptosis. None of these events occurred with organic tamoxifens. The mitochondrial fraction of cells exposed to TLMs contained a high amount of the corresponding metal, as quantified by ICP-OES. The lipophilic and cationic character associated with the singular redox properties of the TLMs could explain why they alter the mitochondrial function. These results provide new insights into the mechanism of action of tamoxifen-like metallocifens, underlying their prodrug behaviour and the pivotal role played by the metallocenic entity in their cytotoxic activity associated with the induction of apoptosis.