Issue 17, 2017

Evaluation of electrochemical performances of ZnFe2O4/γ-Fe2O3 nanoparticles prepared by laser pyrolysis

Abstract

A ZnFe2O4/γ-Fe2O3 nanocomposite (theoretical specific capacity: 1002 mA h g−1) was successfully synthesized by laser pyrolysis, a very attractive nanosynthesis technique characterized by high versatility and flexibility. The obtained nanopowder was thoroughly characterized by XRD, XPS, Mössbauer spectroscopy and HRTEM, which confirmed the presence of two phases. A bimodal size distribution with small particles (tens of nanometers) and large ones (above 500 nm) was revealed by SEM and TEM. The ZnFe2O4/Fe2O3 nanocomposite was tested as a negative electrode material for lithium-ion batteries, showing significantly improved lithium storage properties with a high reversible capacity and rate capability compared to a pure ZnFe2O4 electrode. A capacity exceeding 1200 mA h g−1 is sustained after 100 cycles at 100 mA g−1, with a gradual increase of the capacity during cycling. At 500 mA g−1 current rate, a reversible and stable capacity of 360 mA h g−1 is observed after 300 cycles. Electrochemical measurements with several electrolytes and electrode formulations were also conducted in order to explore the origin of the extra capacity and its increase with cycling.

Graphical abstract: Evaluation of electrochemical performances of ZnFe2O4/γ-Fe2O3 nanoparticles prepared by laser pyrolysis

Article information

Article type
Paper
Submitted
06 Mar 2017
Accepted
18 Jul 2017
First published
18 Jul 2017

New J. Chem., 2017,41, 9236-9243

Evaluation of electrochemical performances of ZnFe2O4/γ-Fe2O3 nanoparticles prepared by laser pyrolysis

S. Bourrioux, L. P. Wang, Y. Rousseau, P. Simon, A. Habert, Y. Leconte, M. T. Sougrati, L. Stievano, L. Monconduit, Z. J. Xu, M. Srinivasan and A. Pasturel, New J. Chem., 2017, 41, 9236 DOI: 10.1039/C7NJ00735C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements