Issue 4, 2017

Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms

Abstract

Chemical vapour deposition (CVD) growth of carbon nanotubes is currently the most viable method for commercial-scale nanotube production. However, controlling the ‘chirality’, or helicity, of carbon nanotubes during CVD growth remains a challenge. Recent studies have shown that adding chemical ‘etchants’, such as ammonia and water, to the feedstock gas can alter the diameter and chirality of nanotubes produced with CVD. To date, this strategy for chirality control remains sub-optimal, since we have a poor understanding of how these etchants change the CVD and nucleation mechanisms. Here, we show how ammonia alters the mechanism of methane CVD and single-walled carbon nanotube nucleation on iron catalysts, using quantum chemical molecular dynamics simulations. Our simulations reveal that ammonia is selectively activated by the catalyst, and this enables ammonia to play a dual role during methane CVD. Following activation, ammonia nitrogen removes carbon from the catalyst surface exclusively via the production of hydrogen (iso)cyanide, thus impeding the growth of extended carbon chains. Simultaneously, ammonia hydrogen passivates carbon dangling bonds, which impedes nanotube nucleation and promotes defect healing. Combined, these effects lead to slower, more controllable nucleation and growth kinetics.

Graphical abstract: Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2016
Accepted
07 Jan 2017
First published
09 Jan 2017

Nanoscale, 2017,9, 1727-1737

Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms

C. A. Eveleens and A. J. Page, Nanoscale, 2017, 9, 1727 DOI: 10.1039/C6NR08222J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements