Issue 17, 2017

Enhancement of the hole conducting effect of NiO by a N2 blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode

Abstract

In this article, we demonstrate for the first time a mesoscopic printable perovskite solar cell (PSC) using NiO as the hole transporting material and low-temperature processed carbon as the counter electrode. A single deposition method assisted by N2 blow drying was used for the deposition of MAPbI3 on a TiO2/ZrO2/NiO screen-printed electrode. As the final step a low-temperature processing (i.e. 75 °C) carbon counter layer was fabricated on MAPbI3 by a blade coating method. It is found that the capping layer thickness of MAPbI3 has a significant effect on the device efficiency, especially when NiO is introduced as a hole transporting material into the structure. Electrochemical impedance spectroscopy demonstrates good charge transport characteristics for the device with a thin MAPbI3 capping layer obtained by the N2 blow drying method. Our best performing device demonstrated a remarkable photovoltaic performance with a short-circuit current density (Jsc) of 22.38 mA cm−2, an open circuit voltage (Voc) of 0.97 V, and a fill factor (FF) of 0.50 corresponding to a photo-conversion efficiency (PCE) of 10.83%. Moreover, the un-encapsulated device exhibited advantageous stability over 1000 h in air in the dark.

Graphical abstract: Enhancement of the hole conducting effect of NiO by a N2 blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode

Article information

Article type
Paper
Submitted
16 Jan 2017
Accepted
23 Mar 2017
First published
31 Mar 2017

Nanoscale, 2017,9, 5475-5482

Enhancement of the hole conducting effect of NiO by a N2 blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode

T. A. N. Peiris, A. K. Baranwal, H. Kanda, S. Fukumoto, S. Kanaya, L. Cojocaru, T. Bessho, T. Miyasaka, H. Segawa and S. Ito, Nanoscale, 2017, 9, 5475 DOI: 10.1039/C7NR00372B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements