Issue 12, 2017

Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study

Abstract

Nanostructured semiconducting polymers have emerged as a very promising class of metal-free photocatalytic materials for solar water splitting. However, they generally exhibit low efficiency and lack the ability to utilize long-wavelength photons in a photocatalytic oxygen evolution reaction (OER). Here, based on first-principles calculations, we reveal that the two-dimensional (2D) aza-fused conjugated microporous polymer (aza-CMP) with a honeycomb network is a semiconductor with novel layer-dependent electronic properties. The bandgap of the as-synthesized aza-CMP nanosheets is measured to be 1.22 eV, suggesting that they can effectively boost light absorption in the visible and near infrared (NIR) region. More importantly, aza-CMP also possesses a valence band margin suitable for a photocatalytic OER. Taking advantage of the 2D layered nanostructure, we further show that the exfoliated ultrathin aza-CMP nanosheets can exhibit a three-fold enhancement in the photocatalytic OER. After deposition of a Co(OH)2 cocatalyst, the hybrid Co(OH)2/aza-CMP photocatalyst exhibits a markedly improved performance for photocatalytic O2 evolution. Furthermore, first-principles calculations reveal that the photocatalytic O2 evolution reaction is energetically feasible for aza-CMP nanosheets under visible light irradiation. Our findings reveal that nanostructured polymers hold great potential for photocatalytic applications with efficient solar energy utilization.

Graphical abstract: Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2017
Accepted
27 Feb 2017
First published
02 Mar 2017

Nanoscale, 2017,9, 4090-4096

Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study

L. Wang, Y. Wan, Y. Ding, Y. Niu, Y. Xiong, X. Wu and H. Xu, Nanoscale, 2017, 9, 4090 DOI: 10.1039/C7NR00534B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements