Issue 18, 2017

Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery

Abstract

Carbon dot (CD)-based multifunctional delivery systems have shown great potential in both drug/gene delivery and bio-imaging. In this work, we present a strategy to simply construct amphiphilic CDs (ACDs) by conjugating hydrophobic alkyl epoxide to the surface amino groups of PEI 600-derived CDs. ACDs could well dissolve in water or organic solvents and emit bright fluorescence both in solutions and cells. 1HNMR also suggested that ACDs may form micelle-like structures in water, and their CMC could be determined. Enhanced green fluorescent protein (EGFP) expression and flow cytometry experiments showed that ACDs have higher transfection efficiency than Lipofectamine 2000 in A549 cells. Besides DNA, ACDs could also effectively transfect Sur siRNA toward A549 cells and cause early cell apoptosis. The 3D multicellular spheroids further confirmed their high potential for delivering therapeutic genes into the tumor tissue. On the other hand, ACDs also exhibited good drug loading ability. CLSM experiment results showed that DOX could be effectively internalized by the cell and slowly released from the drug/ACD complex. These results suggest that ACDs may not only serve as versatile delivery vectors with potential for applications in clinical cancer treatment, but also offer an inspiration for the discovery of CD-based gene/drug delivery systems.

Graphical abstract: Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
12 Feb 2017
Accepted
20 Mar 2017
First published
28 Mar 2017

Nanoscale, 2017,9, 5935-5947

Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery

H. Wang, X. He, T. Luo, J. Zhang, Y. Liu and X. Yu, Nanoscale, 2017, 9, 5935 DOI: 10.1039/C7NR01029J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements