Issue 25, 2017

Graphene on h-BN: to align or not to align?

Abstract

The contact strength, adhesion and friction, between graphene and an incommensurate crystalline substrate such as h-BN depends on their relative alignment angle θ. The well-established Novaco–McTague (NM) theory predicts for a monolayer graphene on a hard bulk h-BN crystal face a small spontaneous misalignment, here θNM ≃ 0.45 degrees which if realized would be relevant to a host of electronic properties besides the mechanical ones. Because experimental equilibrium is hard to achieve, we inquire theoretically about alignment or misalignment by simulations based on dependable state-of-the-art interatomic force fields. Surprisingly at first, we find compelling evidence for θ = 0, i.e., full energy-driven alignment in the equilibrium state of graphene on h-BN. Two factors drive this deviation from the NM theory. First, graphene is not flat, developing on h-BN a long-wavelength out-of-plane corrugation. Second, h-BN is not hard, releasing its contact stress by planar contractions/expansions that accompany the interface moiré structure. Repeated simulations by artificially forcing graphene to keep flat, and h-BN to keep rigid, indeed yield an equilibrium misalignment similar to θNM as expected. Subsequent sliding simulations show that friction of graphene on h-BN, small and essentially independent of misalignments in the artificial frozen state, strongly increases in the more realistic corrugated, strain-modulated, aligned state.

Graphical abstract: Graphene on h-BN: to align or not to align?

Article information

Article type
Paper
Submitted
03 Apr 2017
Accepted
19 May 2017
First published
24 May 2017

Nanoscale, 2017,9, 8799-8804

Graphene on h-BN: to align or not to align?

R. Guerra, M. van Wijk, A. Vanossi, A. Fasolino and E. Tosatti, Nanoscale, 2017, 9, 8799 DOI: 10.1039/C7NR02352A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements