Issue 43, 2017

Self-powered hydrogels induced by ion transport

Abstract

Electroactive hydrogels are needed to enable stretchable electronics because of their flexible mechanical characteristics and electrical conductive properties. We describe a class of viscoelastic, porous, ion-conductive, and self-powered hydrogels that are fabricated based on a PHEMA hydrogel (poly(2-hydroxyethyl methacrylate)) and PPy (polypyrrole). They are capable of creating synchronous ionic current in electrolyte solution when enduring mechanical deformation. The conditions that impact the electric response of the hydrogel, such as stress, strain rate, pH of electrolyte solution, and concentration of ions in the electrolyte solution, have been investigated and reported in this paper. The mechanism of creating ionic current under deformation is elaborated through numerical simulation and experimental tests. Moreover, by embedding the electrically self-powered hydrogel into a movable object, such as a sports shoe, the patterns of mechanical actions (e.g. walking, running, or jumping) can be identified from the generated electrical current without any assistance of external batteries or power sources. It presents the outstanding potential of this hydrogel in building self-powered soft devices including active sensors and artificial skins.

Graphical abstract: Self-powered hydrogels induced by ion transport

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2017
Accepted
02 Oct 2017
First published
04 Oct 2017

Nanoscale, 2017,9, 17080-17090

Self-powered hydrogels induced by ion transport

Z. Shi, W. Zhao, S. Li and G. Yang, Nanoscale, 2017, 9, 17080 DOI: 10.1039/C7NR02962D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements