Silicene growth through island migration and coalescence†
Abstract
We perform massively-parallel classical molecular dynamics (MD) simulations to study the long timescale monolayer silicene growth on an Ir (111) surface. We observe an intricate multi-stage growth process driven by atomic and cluster migration on the surface. Initial growth involves formation of sub-nanometer clusters via adatom surface diffusion. Subsequently, these clusters rearrange spontaneously with each additional Si atom, forming clusters containing 4–7 member rings. Growth of each cluster through adatom adhesion is accompanied by the formation of larger islands through cluster migration and coalescence. Coalescence of smaller, more mobile islands into larger clusters is aided by the internal rearrangement of rings within each cluster. This flexibility, both of clusters and their constituent atoms, allows the impinging clusters to reorient after first contact and form a more perfect union. We also report on the effect of temperature and flux on the growth process and the final nanostructure. Our study provides atomistic insights into the early stage growth mechanisms of silicene which can be significant for controlled synthesis of its 2D monolayers.