Poly-N-acryloyl-(l-phenylalanine methyl ester) hollow core nanocapsules facilitate sustained delivery of immunomodulatory drugs and exhibit adjuvant properties†
Abstract
Polymeric hollow nanocapsules have attracted significant research attention as novel drug carriers and their preparation is of particular concern owing to the feasibility to encapsulate a broad range of drug molecules. This work presents for the first time the synthesis and development of novel poly-N-acryloyl L-phenylalanine methyl ester hollow core nanocapsules (NAPA-HPNs) of avg. size ca. 100–150 nm by the mini-emulsion technique. NAPA-HPNs are biocompatible and capable of encapsulating sodium nitroprusside (SNP) at a rate of ∼1.3 μM per mg of capsules. These NAPA-HPNs + SNP nano-formulations maintained homeostasis of macrophages which carry and facilitate the action of various drug molecules used against various diseases. These NAPA-HPNs also facilitate the prolonged release of a low level of nitric oxide (NO) and enhance the metabolic activities of pro-inflammatory macrophages, which are important for the action of various drugs in body fluids. NAPA-HPN mediated skewing of naïve macrophages toward the M1 phenotype potentially demonstrates its adjuvant action on the innate immune system. These results potentially suggested that NAPA-HPNs can serve both as a carrier of drugs as well as an adjuvant for the immune system. Thus, these nanocapsules could be used for the effective management of various infectious or tumor diseases where immune-stimulation is paramount for treatment.