Issue 33, 2017

A DNA bipedal nanowalker with a piston-like expulsion stroke

Abstract

Artificial molecular walkers beyond burn-bridge designs are important for nanotechnology, but their systematic development remains difficult. Herein, we have reported a new rationally designed DNA walker–track system and experimentally verified a previously proposed general expulsion regime for implementing non-burn-bridge nanowalkers. The DNA walker has an optically powered engine motif that reversibly extends and contracts the walker via a quadruplex–duplex conformational change. The walker's extension is an energy-absorbing and force-generating process, which drives the walker's leg dissociation off-track in a piston-like expulsion stroke. The unzipping-shearing asymmetry provides the expulsion stroke a bias, which decides the direction of the walker. Moreover, three candidate walkers of different sizes were fabricated. Fluorescence motility experiments indicated two of them as successful walkers and revealed a distinctive size dependence that was expected for these expulsive walkers, but was not observed in previously reported walkers. This study identifies unique technical requirements for expulsive nanowalkers. The present DNA design is readily adapted for making similar walkers from other molecules since the unzipping-shearing asymmetry is common.

Graphical abstract: A DNA bipedal nanowalker with a piston-like expulsion stroke

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2017
Accepted
31 Jul 2017
First published
02 Aug 2017
This article is Open Access
Creative Commons BY license

Nanoscale, 2017,9, 12142-12149

A DNA bipedal nanowalker with a piston-like expulsion stroke

Q. Y. Yeo, I. Y. Loh, S. R. Tee, Y. H. Chiang, J. Cheng, M. H. Liu and Z. S. Wang, Nanoscale, 2017, 9, 12142 DOI: 10.1039/C7NR03809G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements