Issue 33, 2017

In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction

Abstract

Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoOxfor the first time in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoOx cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm−2 and the overpotential of only 350 mV at 300 mA cm−1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoOx cluster. In addition, we studied the reaction mechanism, and it was observed that pure O2 DBD plasma could lead to the evolution of crystalline CoOx; however, the presence of N2 and O2 in DBD plasma could ensure the facile evolution of amorphous CoOx clusters. This study provides a new strategy to design amorphous materials for electrocatalysis and beyond.

Graphical abstract: In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2017
Accepted
19 Jul 2017
First published
24 Jul 2017

Nanoscale, 2017,9, 11969-11975

In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction

D. Chen, C. Dong, Y. Zou, D. Su, Y. Huang, L. Tao, S. Dou, S. Shen and S. Wang, Nanoscale, 2017, 9, 11969 DOI: 10.1039/C7NR04381C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements