Issue 6, 2017

A comparative study of the effect of functional groups on C2H2 adsorption in NbO-type metal–organic frameworks

Abstract

Investigation of the effect of functional groups on gas adsorption in a MOF of a given structure is undoubtedly very important because it facilitates targeting porous MOFs with enhanced storage capacities by ligand functionalization. In this work, we chose an NbO-type MOF platform to evaluate the impact of organic functional groups on C2H2 adsorption. Correspondingly, we synthesized five diisophthalate ligands with the same length but different organic functionalities (NH2, CH3, NO2, F, and CF3), and successfully incorporated them into MOFs with underlying NbO topology. C2H2 adsorption experiments reveal that these functional moieties can enhance the affinity towards C2H2, but not all these compounds outperform the unfunctionalized parent compound NOTT-101 in terms of C2H2 uptake. At 298 K and 1 atm, the C2H2 uptake varies from 153.7 to 193.8 cm3 (STP) g−1, depending on the attached organic functional groups. Particularly, the amine group-functionalized compound ZJNU-34(NH2) exhibits the maximum C2H2 uptake of the six compounds evaluated, reaching as high as 203.6 cm3 (STP) g−1 at 295 K and 1 atm. Such a 10% increase of C2H2 uptake compared to the parent compound might be attributed to acid–base and/or hydrogen-bonding interactions between the NH2 groups with adsorbed C2H2 molecules. The fundamental understanding of the impact of functional groups on C2H2 adsorption demonstrated in this work provides valuable information for future designing of porous MOFs with enhanced acetylene-storage capacities.

Graphical abstract: A comparative study of the effect of functional groups on C2H2 adsorption in NbO-type metal–organic frameworks

Supplementary files

Article information

Article type
Research Article
Submitted
02 Feb 2017
Accepted
28 Mar 2017
First published
30 Mar 2017

Inorg. Chem. Front., 2017,4, 960-967

A comparative study of the effect of functional groups on C2H2 adsorption in NbO-type metal–organic frameworks

F. Chen, D. Bai, X. Wang and Y. He, Inorg. Chem. Front., 2017, 4, 960 DOI: 10.1039/C7QI00063D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements