Composition-controllable synthesis of defect-rich PtPdCu nanoalloys with hollow cavities as superior electrocatalysts for alcohol oxidation†
Abstract
Preparing defect-rich Pt-based nanocatalysts for alcohol fuel cell applications remains a huge challenge. Here, we introduce a facile, environmentally friendly, one-pot approach to synthesize trimetallic PtPdCu nanoalloys with hollow cavities and numerous defects, such as lower coordination atoms, corners, interior boundaries, lattice disorders and dislocations and twin boundaries. The as-synthesized Pt34Pd33Cu33 nanoalloys exhibit excellent electrocatalytic properties for alcohol oxidation in acidic medium. The peak current density of the Pt34Pd33Cu33 nanoalloys is, respectively, 2.2 times (for methanol), 1.2 times (for ethanol) and 2.1 times (for glycol) that on commercial Pt black. Furthermore, after 1000 cycles, the current density of the Pt34Pd33Cu33 nanoalloys is 2.4 times (for methanol), 1.8 times (for ethanol) and 3.0 times (for glycol) that on commercial Pt black.