Issue 6, 2017

Theoretical insights into photo-induced Curtius rearrangement of chlorodifluoroacetyl azide

Abstract

Upon application of heat or UV light, acyl azides undergo the Curtius rearrangement leading to an isocyanate with the loss of nitrogen gas, which is of great importance in organic chemistry and biological science. The mechanism of the thermal Curtius rearrangement has been made clear, but the photo-induced one remains controversial. In this work, the mechanism of photo-induced Curtius rearrangement of chlorodifluoroacetyl azide F2ClCC(O)N3 has been investigated using the MS-CASPT2//CASSCF method combined with density functional theory (DFT). Our calculations disclosed that illumination with light of 225 nm or 193 nm populates the S21π2*) state or S4(nOπ1*) state of F2ClCC(O)N3 at the Franck–Condon region, followed by internal conversion to the S1 state minimum of (π1π1*) character. The reaction is initiated through the elimination of N2 that leads to a nitrene intermediate in the S1 state. Subsequently, the S1 state nitrene decays to the ground state via an S1/S0 conical intersection, resulting in either nitrene or isocyanate. The obtained results show that F2ClCC(O)N3 prefers to undergo photo-induced Curtius rearrangement in a stepwise mechanism via the nitrene intermediate. This work not only provides a clear mechanism for the Curtius rearrangement of chlorodifluoroacetyl azide, but also gives new insights into the photochemistry of acyl azides and nitrene where conical intersections between excited states and ground states play key roles.

Graphical abstract: Theoretical insights into photo-induced Curtius rearrangement of chlorodifluoroacetyl azide

Supplementary files

Article information

Article type
Research Article
Submitted
30 Jan 2017
Accepted
04 Mar 2017
First published
06 Mar 2017

Org. Chem. Front., 2017,4, 1153-1161

Theoretical insights into photo-induced Curtius rearrangement of chlorodifluoroacetyl azide

X. Peng, W. Ding, Q. Li and Z. Li, Org. Chem. Front., 2017, 4, 1153 DOI: 10.1039/C7QO00083A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements