Issue 3, 2017, Issue in Progress

The development of sol–gel derived TiO2 thin films and corresponding memristor architectures

Abstract

We report the development of sol–gel derived TiO2 thin films with adjustable and defined properties suitable for memristive cell fabrication. Memristive cells were developed by the sol–gel deposition of titania onto SiO2/Ti/Pt engineered electrodes via spin coating, followed by diverse curing and annealing procedures. The influence of the processing conditions and the sol's chemical composition on the film properties, and therefore on the memristive response, was studied by micro-Raman and transmission spectroscopies, profilometry, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and X-ray absorption and diffraction spectroscopies (XAS and XRD). A memristive response was acquired from a number of these cells, revealing a dependence of the electrical behavior on minor changes in the TiO2 structure, electroforming parameters, and architecture. Thus, these properties provide a handle for fine-tuning electrical performance.

Graphical abstract: The development of sol–gel derived TiO2 thin films and corresponding memristor architectures

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2016
Accepted
14 Nov 2016
First published
09 Jan 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 1654-1663

The development of sol–gel derived TiO2 thin films and corresponding memristor architectures

V. Prusakova, C. Collini, M. Nardi, R. Tatti, L. Lunelli, L. Vanzetti, L. Lorenzelli, G. Baldi, A. Chiappini, A. Chiasera, D. Ristic, R. Verucchi, M. Bortolotti and S. Dirè, RSC Adv., 2017, 7, 1654 DOI: 10.1039/C6RA25618J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements